> MGRID - Mastering Medical Data

Simple. effective. solutions.

MGRID software implements the shortest standardized path between data sources and applications for reporting and analytics.

Learn more

BI explorer

BI Explorer is a healthcare data exploration and pivoting tool for finding patients that fit a certain profile and preparing queries for reporting tools.

Learn more

Dataset Builder

DSB is a purpose-built solution to speed up creation of data sets for clinical research.

Learn more

Query Builder

Query Builder is a web-based tool for visual query building on healthcare databases.

Learn more

Healthcare Data integration

Use our standards-based healthcare data integration solution to aggregate and consolidate data from multiple different medical data sources.

The increasing ability to electronically maintain healthcare data carries with it the enormous potential to also improve overall healthcare. Collecting and analyzing data opens possibilities to further share knowledge, improve patient outcomes, optimise coordinated care processes and support evidence-based medicine. This is accomplished by comparing the effectiveness of treatments and by detecting treatment trends. A data-driven solution is a key component in providing this necessary knowledge for better care, lower cost and improved efficiency. MGRID offers such a solution for data-integration, reporting and analytics.

To drive healthcare reporting and analytics through data compiled from multiple operational data sources, it is necessary to translate source data into a common information model. Instead of developing a proprietary model, MGRID adopts the standardised and normalised models from HL7v2, HL7v3 RIM and HL7 FHIR for the Healthcare Data Model.

Benefits of using the HL7 standards for a datamodel include:

  • No additional mapping is required, besides mapping to the HL7 exchange standard, since the database data model is aligned with the healthcare exchange data model.
  • De-coupling of operational data sources and systems for reporting and analytics, resulting in smaller components and less inter-dependencies within the overall system.
  • HL7 data models track the full context and history of data, which can be used in order to check that data from multiple sources over many years are commensurate, a requirement for longitudinal and epidemiological studies.

The MGRID Healthcare Data Model offers best-in-class database support and performance for all HL7 standards.

MGRID has developed applications that aid message transformation, dataset creation and dataset exploration. The modules and applications of MGRID follow the HL7 and SQL standards; they are well-suited and intended to be used as components in software stacks for the medical vertical. MGRID software makes the process of preparing data for healthcare reporting and analytics more efficient, taking the next step toward improved data analysis, and consequently, overall healthcare.

Reporting for Healthcare

Healthcare data reporting ranges from mandatory regulated quality reports to reports that facilitate treatment planning over active patients. The main objective is to transform consolidated medical information into answers to business questions, such as:

  • Determine which patients are outside treatment bandwidth. This is especially important for chronic diseases, where the patient might participate and have limited real-life interaction with care professionals.
  • Quickly determine a cohort of patients with a particular set of observations relevant to a new analytical study.
  • Benchmark treatment centers A & B for a particular treatment of chronic patients.
  • Determine treatment efficacy over total patient population.

Conceptually progressing from medical data to a report requires the following steps:

  • Data ingress and consolidation
  • Report definition: identify the required information.
  • Data preparation: transform repository facts to potential aggregated report facts.
  • Visualisation: deliver a list or graph (csv, pdf).
  • Validation: given test data, does the transformation process report what we expect?

Data can be prepared in a number of ways:

  • Using Dataset Builder (DSB) to distill the clinical repository to the required facts.
  • For commonly used ingest formats such as CDA R2, CDA R3 and CCDA, MGRID offers a process that automatically returns a view of all observations per patient.

BI Explorer facilitates report definition by drilling down into the prepared base reporting tables. Here queries can be constructed visually, and shared between users. Note that queries which underlie government mandated reports can be identified and shared between all Explorer users.

When all queries needed for a particular report have been constructed, they can be embedded into a report on the MGRID report server, which allows clinicians or administrators direct access to a PDF rendition for a specified period. Drill-down is supported by diving down into a specific stored query in BI Explorer. Our policy is to develop mandatory reports for a particular locality once, and then distribute them to all of our customers.

Analytics for Healthcare

Healthcare data analytics ranges from basic statistical summaries of data and inferences to advanced predictive models. These models help to gain insight into disease progression and they support of the process of selecting the right treatment for individual patients. Statistical methods used include:

  • Prediction
  • Quantitative analysis
  • Pattern matching
  • Structured data analysis
  • Identification of abnormal patterns
  • Processing large time-series data
  • Regression analysis
  • Unsupervised / supervised learning
  • Descriptive / inferential statistics
  • Risk stratification
  • Statistical analysis of large historical

One factor that these methods have in common is that they reveal patterns in data, and from these patterns, inferences can be made to support decisions.

Data analysts spend the bulk of their time on getting, cleaning and preparing data, which is the process of preparing and selecting variables for data sets that will be used by analytical tools. Each data analysis project has its own requirements for variables (features), and during the analysis, more knowledge is gained about variables which prove to be useful, and, about the additional variables that are required. Given a repository of healthcare data, the ability to quickly prepare data sets with selected and constructed features will enable data analysts to test hypotheses quickly, thus increasing productivity.

To aid in dataset creation for healthcare research, MGRID has developed Dataset Builder. DSB removes the need to manually craft SQL or scripts to select, merge and manipulate data data, which speeds up the time of data set creation from weeks to hours. Please refer to the DSB product page for more information.

BI Explorer - Dataset Exploration

BI Explorer is a healthcare data exploration and pivoting tool. Purpose written for healthcare, the Explorer can filter, group and pivot a dataset to provide quick answers to business intelligence questions, select patients that fit a certain profile and prepare queries to use as a basis for reporting tools. BI Explorer is complementary with and designed to operate as a pre-processing step for existing reporting tools. Contact us for more information or a demonstration.

BI Explorer includes the following features:

  • Multi tenant deployment in SaaS environments
  • Data filtering on date, demographics, treatment (diagnose, physician, type of medication etc.), process (number of encounters, date of procedure, etc.) and lab results
  • Include or exclude data columns
  • Grouping on e.g. organization with standard aggregates such as count and median
  • Group fractions, to select e.g. fraction of patients within an organisation with BMI < 30
  • Pivoting supports aggregates over more specialized groups. For instance, pivot on gender to break down the fraction of patients with BMI < 30 into a fraction for man and a fraction for woman.
  • Store a combination of filters, groupings and pivots as a ‘preset’
  • Share presets with other users
  • Service provider can add standard quality measures as presets, to allow users to start looking at a particular set of patients that are outside treatment bandwidth, and drill down from there.
  • Export data as CSV
  • Export data as SQL query for inclusion in a reporting tool
  • Brandable with custom user interface

BI Explorer has been successfully deployed to deliver the following kinds of reports:

  • Cross-organization competitive analysis
  • Cross-practitioner competitive analysis
  • Deviation of organization performance
  • Outliers as defined by national parameters
  • Outliers relative to a custom patient group
  • Risk factor analysis
  • Data analysis comparing medication to lab results
  • Trend analysis, trend in the process
  • Trend analysis, trend on observed values

DSB - Dataset Creation

Dataset Builder is a purpose-built solution to speed up creation of data sets for clinical research.

DSB includes the following features:

  • Exploration of lab results, diagnosis, risk factor,allergy, medication, care plan, organisation, practitioner, device and other variables
  • In-database feature construction
  • Feature selection
  • Cohort selection
  • Data set creation and extraction using CSV and SQL
  • Scheduling of tabular data generation
  • Accountable transformation process for reproducible research

DSB is complementary to existing tools for data analysis and analytic workspace management, acting as a pre-processing step to produce tabular data for consumption by statistics and analytics tools. With DSB the complete transformation process from raw data to tabular data is documented and versioned, which enables re-use of constructed features, and also helps reproducible research and quality assurance of the transformation process.

Built on the MGRID Healthcare Data Model, DSB can perform in-database operations to transform physical quantity continuous variables from one unit to another, for instance from mg/dL to mmol/L. In addition, for categorical coded values, DSB has support for selections and calculations using knowledge from clinical and drug ontologies, to perform data selection and integration based on concept subtree search for hierarchical code systems such as SNOMED-CT, and search and transform drug features using synonym drug names, ingredients and interactions, based on the RxNorm database.

Query Builder

Query Builder is a web-based tool for visual query building on healthcare databases.

The Query Builder is used by researchers to select research data from existing healthcare databases, such as clinical datawarehouses, and export the data to a safe location for analysis.

Actual data delivery is controlled by an approval process that allows data stewards to either approve or deny each query before processing. If the source database contains personally identifiable data, the data can be de-identified before extraction. This de-identification can be either pre-configured for the source database, or be configured per query (subject to approval by a data steward).

XFM - Message Transformation

MGRID Message Transformation XFM provides messaging based infrastructure for the exchange of healthcare data between medical data sources and systems for secondary usage reporting and analytics. Built upon RabbitMQ from the Pivotal Big Data suite, with XFM thousands of healthcare messages per second can be received, transformed and loaded into the Healthcare Data Model.

XFM includes the following features:

  • Routing of HL7v2, v3 and FHIR messages
  • Message validation
  • XML to SQL transformation
  • Custom transformers
  • Message aggregation
  • Message constraint checking
  • Data pre-processing
  • Database loading
  • Automatic deployment and scaling of components on virtualization and private clouds.
  • XFM dashboard

The scalability of XFM has been proofed as part of the Portavita Benchmark, the first Big Data Healthcare Benchmark. XFM plays a central role in the Portavita Benchmark. During data generation, thousands of synthetic CDA XML and FHIR messages are generated every second, and send to XFM. XFM orchestrates message transformation, validation, loading into micro-databases and copying the micro-databases in batches to the target Healthcare Data Model database.

Part of XFM is the Messaging SDK (MSG). With this SDK, parsers can be generated for custom HL7v3 message types. These parsers validate and convert XML to SQL. MGRID supplies parsers for HL7 supplied messages types such as CDA and Consolidated-CDA as part of the distribution.

HDM - Healthcare Data Model

The MGRID Healthcare Data Model (HDM) provides database support for the HL7v2, HL7v3 and HL7 FHIR standards. After loading data, the HDM is the source of information for reporting and analytics use cases which require data from multiple sources or longer periods of time.

HDM includes the following features:

  • No loss of information
  • Complete, auditable information is stored
  • Support for all HL7 standards
  • Full SQL support for query of data: JSON data types combined with SQL JOIN, UNION, CTE queries and other set operators
  • Database support for reasoning with physical quantities, coded values and time intervals

The MGRID Healthcare Data Model is the only model that provides seamless access to all HL7 standards from the same unified interface:

  • HL7v2 - Data received from a HL7v2 connector is transformed into JSON and stored.
  • HL7v3 - HDM supports R1 and R2 datatypes, all RIM versions.

Together, these standards cover the following domains:

  • Accounting and Billing
  • Care Provision
  • Clinical Decision Support
  • Clinical Genomics
  • Common Message Element Types
  • Composite Privacy Consent
  • Detailed Clinical Models
  • eMeasures
  • Immunization
  • Medical Records
  • Personnel Management
  • Preoperative
  • Registries
  • Regulated Reporting
  • Scheduling
  • Specimen Domain
  • Tuberculosis
  • Vital Records
  • Cardiology
  • Claims & Reimbursement
  • Clinical Document Architecture
  • Clinical Statement
  • Common Product Model
  • Directive
  • Diet and Nutrition Orders
  • Emergency Medical Services
  • Laboratory
  • Patient Administration
  • Pharmacy
  • Anesthesiology
  • Regulated Products
  • Regulated Studies
  • Shared Messages
  • Therapeutic Devices
  • Virtual Medical Record
  • Performance and scalability

The MGRID HDM is available on PostgreSQL and Pivotal Big Data Suite databases. PostgreSQL is a highly versatile and server suitable for OLTP deployments, and has been reported to reach over 300.000 TPS on a single node server. For Extract, Load, Transform deployments where the transform step from source data to query format data is performed on-the-fly, Pivotal Greenplum distributed parallel database server ensures query performance for large databases.

Manuals

BI Explorer - Dataset Exploration

DSB - Dataset Builder

XFM - Message Transformation

HDM - Healthcare Data Model

Whitepapers

 

Product brief

Information about the MGRID healthcare data platform.

Adding HL7 v3 data types to PostgreSQL

Technical background about adding support for specialized healthcare datatypes to the PostgreSQL relational database server.

About MGRID

MGRID develops software for managing medical data. The advantages of MGRID are scalability for large databases, low costs in use, low investment costs for extensions and high guaranteed speed for use in interactive environments. In addition, the company provides analytical and statistical reports.

MGRID originates from Portavita and has partly the same shareholders, including Deutsche Telekom.

info@mgrid.net +31 (0)88 647 4300

Chamber of commerce: Amsterdam 34343475

Groningen Office

Mediacentrale 4th floor, Helperpark 292, 9723 ZA Groningen, The Netherlands

Amsterdam Office

Oostenburgvoorstraat 106, 1018 MR Amsterdam, The Netherlands